



# JEE Main - 1 | JEE 2024

Date: 25/07/2022 Maximum Marks: 300

Timing: 04:00 PM to 07:00 PM

# **General Instructions**

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- 2. The question paper consists of **3 Parts** (Part I: **Physics**, Part II: **Chemistry**, Part III: **Mathematics**). Each Part has **two** sections (Section 1 & Section 2).
- 3. Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.
- **4. Section 2** contains **5 Numerical Value Type Questions**. The answer to each question is an **integer** ranging from 0 to 99.
- **5.** No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- **6.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 7. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. **However, the candidates are allowed to take away this Test Booklet with them**.
- 8. Do not fold or make any stray mark on the Answer Sheet (OMR).

# **Marking Scheme**

- **Section** -1: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section -2: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.

| Name of the Candidate (In CAPITALS) : |
|---------------------------------------|
| Roll Number:                          |
| OMR Bar Code Number :                 |
| Candidate's Signature:                |

# **PART - I: PHYSICS**

100 MARKS

## **SECTION-1**

This section contains 20 Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

- 1. The resultant of 2 forces of magnitude 30 N each, acting at an angle of 120° on a particle will be:
  - (A) 30 N at an angle of 30° with either force
  - **(B)** 30 N at an angle of 60° with either force
  - (C)  $30\sqrt{3}$  N at an angle of 60° with either force
  - **(D)** 60 N at an angle of  $60^{\circ}$  with either force
- 2. A particle is acted upon by a force  $\overline{F} = (\hat{i} 2\hat{j} + \hat{k})N$ . If the particle is at P(-1m, 2m, 3m), then torque of the force about O(2m, 3m, 1m) is:
  - (A) zero

**(B)**  $(\hat{i}-3\hat{j}+\hat{k})Nm$ 

(C)  $(3\hat{i} + 5\hat{j} + 7\hat{k}) Nm$ 

- **(D)**  $(2\hat{i} + 3\hat{j} \hat{k}) Nm$
- 3. Which of the following set of non collinear forces can be acting on a particle in equilibrium?
  - (A) 2N, 3N, 8N
- **(B)** 3N, 4N, 9N
- (C) 5N, 6N, 20N
- **(D)** 4N, 5N, 8N

- 4. The vector  $\bar{a} = \frac{1}{4}(2\hat{i} 2\hat{j} + \hat{k})$ :
  - (A) is a unit vector
  - **(B)** Makes an angle  $\frac{\pi}{3}$  with  $\vec{b} \left( \hat{i} + \frac{\hat{j}}{2} \hat{k} \right)$
  - (C) is parallel to the vector  $\left(\frac{7}{4}\hat{i} \frac{7}{4}\hat{j} + \frac{7}{8}\hat{k}\right)$
  - **(D)** None of these
- 5.  $|\overline{A} \times \overline{B}| = \sqrt{3}\overline{A}.\overline{B}$ , then the value of  $|\overline{A} + \overline{B}|$  is:
  - (A)  $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$
- **(B)** A + B
- (C)  $\left(A^2 + B^2 + \sqrt{3} AB\right)^{1/2}$
- **(D)**  $(A^2 + B^2 + AB)^{1/2}$
- 6. The tension in the horizontal string is 5N. The weight of block is 12 N. Tension in diagonal string is: (Strings are massless and inextensible.)

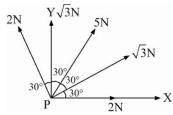


- (A) 17 N
- **(B)** 7 N
- (C) 13 N
- **(D)** 10 N

- 7. The value of  $\overline{a} \cdot (\overline{a} \times \overline{b})$  will be:
  - **(A)** 0

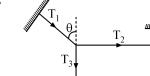
**(B)**  $\overline{a}.\overline{a} + \overline{a}.b$ 

(C)  $a^2b$ 


**(D)** Depends on  $|\bar{a}| \& |\bar{b}|$ 

# **Vidyamandir Classes: Innovating For Your Success**

From figure, the correct relation is: 8.




- $\vec{A} + \vec{B} \vec{E} = \vec{0} \quad \textbf{(B)}$
- $\vec{C} \vec{D} = -\vec{A}$  (C)  $\vec{B} + \vec{E} = \vec{D}$
- **(D)** All of these
- Five forces 2N,  $\sqrt{3}N$ , 5N,  $\sqrt{3}N$  and 2N respectively act at a particle P as shown in the figure : 9.



The resultant force on the particle P is:

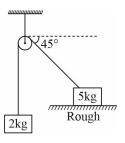
- (A) 10 N making angle 60° with X-axis
- 10 N making angle 60° with Y-axis **(B)**
- **(C)** 20 N along Y-axis
- **(D)** None of these
- 10. In the arrangement shown in the figure if system is in equilibrium, then  $T_1$  and  $\theta$  are :  $(g = 10m/s^2)$ :



(A) 
$$T_1 = 50N, \theta = 37^{\circ}$$

**(B)** 
$$T_1 = 500N, \theta = 53^{\circ}$$

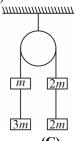
(C) 
$$T_1 = 50N, \theta = 53^{\circ}$$


**(D)** 
$$T_1 = 500N, \ \theta = 37^{\circ}$$

- The resultant of two vector  $\overline{P}$  and  $\overline{Q}$  acting at a point inclined to each other at angle  $\theta$  is  $\overline{R}$ . If the 11. magnitude of vector  $ar{Q}$  is doubled magnitude of new resultant is doubled. If the vector  $ar{Q}$  is reversed in direction, the magnitude of new resultant is again doubled. Then  $|\bar{P}|:|\bar{Q}|$  is:
  - (A) 1:2
- 2:1 **(B)**
- **(C)**
- $\sqrt{2}:\sqrt{3}$  (D)  $\sqrt{3}:\sqrt{2}$
- The projection of  $\overline{P} = 2\hat{i} \hat{j} + 2\hat{k}$  along  $\overline{Q} = 3\hat{i} + 4\hat{j} + 12\hat{k}$  will be: 12.
- **(B)** 2 **(C)**  $\frac{2}{\sqrt{5}}$
- **(D)**
- 13. In the given arrangement, 5 kg block is at rest on a rough surface. 2kg block is hanging vertically. What will be the friction force on 5kg block?  $\{g = 10 \text{ m/s}^2\}$ 
  - 20 N (A)

**(B)** 

 $5\sqrt{2} N$ **(C)** 


**(D)** 



40 kg

- The value of  $\lambda$  so that the unit vectors  $\frac{2\hat{i} + \lambda \hat{j} + \hat{k}}{\sqrt{5 + \lambda^2}}$  and  $\frac{\hat{i} 2\hat{j} + 3\hat{k}}{\sqrt{14}}$  are orthogonal is: 14.
- **(B)**  $\frac{5}{2}$  **(C)**  $\frac{2}{5}$  **(D)**  $\frac{2}{7}$
- If  $\vec{P} + \vec{Q} + \vec{R} = 0$  and angle between  $\vec{P}$  and  $\vec{Q}$  is  $\frac{2\pi}{3}$  and angle between  $\vec{Q}$  and  $\vec{R}$  is  $\frac{\pi}{2}$ . Then 15. angle between  $\vec{R}$  and  $\vec{P}$  will be:
  - 150° (A)
- **(B)**
- 60° **(C)**
- **(D)** 30°
- A force of magnitude 10 N is acting on a particle along  $\hat{i} + \hat{j} \hat{k}$ . The particle displaces from 16. A(1, 2, 3) m to B(4, 5, 6) m. The work done by force on the particle is:
  - 30J(A)
- **(B)**
- $10\sqrt{3}J$  (C)  $-10\sqrt{3}J$
- **(D)**

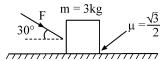
- The angle between  $2\hat{i} + \hat{j} + 2\hat{k}$  and  $\hat{i} \hat{j} + \hat{k}$  is : **17.** 
  - (A)
- (C)  $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$  (D)  $\cos^{-1}\left(\frac{2}{3}\right)$
- 18. The given system is in equilibrium. Find force by clamp on pulley. (Pulleys are massless & frictionless, and strings are massless and inextensible.)



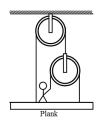
- **(A)** 4mg
- **(B)** 2mg
- 8mg
- **(D)** mg
- 19. A horizontal force of 25 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and wall is 0.4. Find the weight of the block.



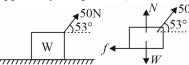
- (A) 100 N
- 10 N **(B)**


- The area of a parallelogram whose sides are  $\vec{a} = (\hat{i} + 2\hat{j} + 2\hat{k})m$  and  $\vec{b} = (2\hat{i} + 4\hat{j} + 5\hat{k})m$ , is: 20.
  - $(\mathbf{A}) \qquad \frac{\sqrt{5}}{2} m^2$
- **(B)**  $\sqrt{5}m^2$
- **(C)**
- **(D)**

**SPACE FOR ROUGH WORK** 


#### **SECTION-2**

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 99 (both inclusive).


- 21. If  $\overline{a}$  and  $\overline{b}$  are two unit vector such that  $\overline{a} + 2\overline{b}$  and  $5\overline{a} 4\overline{b}$  are perpendicular to each other, then the angle (in degree) between  $\overline{a}$  and  $\overline{b}$  is:
- What is the maximum value of the force F (in Newton) such that block shown in the arrangement does not move? (Take  $g = 10 \text{ m/s}^2$ )



23. In the figure, the force with which the man should pull the rope to hold the plank in position is F Newton. If weight of the man is 60 kg f, the plank and pulleys have negligible masses, then value of  $\frac{F}{10}$  will be:  $(g = 10 \text{ m/s}^2)$ 



24. A boy pulls a box of weight 80N with a force of 50N at an angle 53° with the horizontal. The surface is rough and the box moves with a constant velocity under the action of the given forces. Find the net force applied by the ground (in Newton).



25. A vector  $\overrightarrow{A}$  when added to the vector  $\overrightarrow{B} = 3\hat{i} + 4\hat{j}$  yields a resultant vector that is in positive y-direction and has magnitude equal to that of  $\overrightarrow{B}$ . The magnitude of  $\overrightarrow{A}$  is  $\sqrt{x}$ , find x:

**SPACE FOR ROUGH WORK** 

# **PART - II : CHEMISTRY**

100 MARKS

# **SECTION-1**

This section contains 20 Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE CHOICE is correct.

| ONLY | ONE CH                                                                                                                                              | OICE is correct.                           |                     |                                     |                 |                                           |            |                                                    |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|-------------------------------------|-----------------|-------------------------------------------|------------|----------------------------------------------------|--|
| 1.   | The n                                                                                                                                               | ormality of mixto                          | ure obtai           | ined by mixing 1                    | 00 mL c         | of 0.2 M H <sub>2</sub> SO <sub>4</sub> + | - 100 mI   | of 0.2 M NaOH is:                                  |  |
|      | <b>(A)</b>                                                                                                                                          | 0.2                                        | <b>(B)</b>          | 0.01                                | <b>(C)</b>      | 0.1                                       | <b>(D)</b> | 0.3                                                |  |
| 2.   | Arrange the following in order of increasing masses.                                                                                                |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | i. 1 molecule of oxygen                                                                                                                             |                                            |                     | ii.                                 | 1 atom of nitro | gen                                       |            |                                                    |  |
|      | iii. 1 mol of water                                                                                                                                 |                                            |                     |                                     | iv.             | $1 \times 10^{-10}$ g of ir               | on         |                                                    |  |
|      | <b>(A)</b>                                                                                                                                          |                                            |                     |                                     |                 | $ii \le i \le iv \le iii$                 |            |                                                    |  |
| 3.   | 1.0 gm of a mixture of CaCO <sub>3</sub> and NaCl required 30 mL of $\frac{1}{15}$ M H <sub>2</sub> SO <sub>4</sub> solution for complete reaction. |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | The p                                                                                                                                               | ercentage of NaC                           | Cl is: (At          | comic mass: Ca =                    | = 40, C =       | = 12, O = 16, Na                          | = 23, C1   | = 35.5)                                            |  |
|      | <b>(A)</b>                                                                                                                                          | 40%                                        | <b>(B)</b>          | 80%                                 | <b>(C)</b>      | 60%                                       | <b>(D)</b> | 20%                                                |  |
| 4.   | The v                                                                                                                                               | olume of a drop                            | of water            | is 0.04 mL. Hov                     | v many          | H <sub>2</sub> O Molecules                | are there  | e in a drop of water?                              |  |
|      | [d=1]                                                                                                                                               | $.0 \mathrm{g\ mL}^{-1}$ ] (N <sub>A</sub> |                     |                                     |                 |                                           |            |                                                    |  |
|      | <b>(A)</b>                                                                                                                                          | $1.34 \times 10^{21}$                      | <b>(B)</b>          | $6.02 \times 10^{23}$               | <b>(C)</b>      | $5.5 \times 10^{20}$                      | <b>(D)</b> | $3.01 \times 10^{23}$                              |  |
| 5.   | To ne                                                                                                                                               | utralise complete                          | ely 20 m            | L of 0.1 M aque                     | ous solu        | tion of phosphor                          | rous acio  | d (H <sub>3</sub> PO <sub>3</sub> ), the volume of |  |
|      | 0.2 M                                                                                                                                               | aqueous KOH s                              | olution r           | -                                   |                 |                                           |            |                                                    |  |
|      | <b>(A)</b>                                                                                                                                          | 10 mL                                      | <b>(B)</b>          |                                     | <b>(C)</b>      | 40 mL                                     | <b>(D)</b> | 60 mL                                              |  |
| 6.   | The v                                                                                                                                               | olume of water to                          | o be add            | 7                                   |                 | 10                                        |            |                                                    |  |
|      | <b>(A)</b>                                                                                                                                          | $600 \text{ cm}^3$                         | <b>(B)</b>          | $100 \text{ cm}^3$                  | <b>(C)</b>      | $45 \text{ cm}^3$                         | <b>(D)</b> | $400 \text{ cm}^3$                                 |  |
| 7.   | If 5g                                                                                                                                               | $H_2(g)$ is mixed                          | with 14             | $g 	ext{ of } N_2(g) 	ext{ for } t$ | the follo       | wing reaction:                            |            |                                                    |  |
|      | $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$                                                                                                         |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | At the end, mass of $H_2(g)$ left unreacted is:                                                                                                     |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | <b>(A)</b>                                                                                                                                          | 2 g                                        | <b>(B)</b>          | 1 g                                 | <b>(C)</b>      | 3 g                                       | <b>(D)</b> | 1.5 g                                              |  |
| 8.   | 100 c                                                                                                                                               | c of 0.3 N H <sub>2</sub> SO               | 4 and 10            | 0 cc of 0.3 N H                     | Cl were         | mixed together.                           | The nor    | mality of the solution i.e.                        |  |
|      | final o                                                                                                                                             | concentration of                           | H <sup>+</sup> ions | is:                                 |                 |                                           |            |                                                    |  |
|      | <b>(A)</b>                                                                                                                                          | 0.2 N                                      | <b>(B)</b>          | 0.4 N                               | <b>(C)</b>      | 0.3 N                                     | <b>(D)</b> | 0.6 N                                              |  |
| 9.   | In certain reaction 1.88 moles of TiCl <sub>4</sub> is reacted with 4 moles of Mg. Calculate % yield of Ti if only $\frac{2}{3}$                    |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | moles                                                                                                                                               | of Ti is actually                          | obtained            | d. (Reaction invo                   | olved Ti        | $Cl_4 + 2Mg \longrightarrow$              | Ti + 2N    | $MgCl_2$ )                                         |  |
|      | <b>(A)</b>                                                                                                                                          | 35.46%                                     | <b>(B)</b>          | 66.6%                               | <b>(C)</b>      | 100%                                      | <b>(D)</b> | 60%                                                |  |
| 10.  | The following process has been used to obtained iodine from oil-field brines in California.<br>$NaI + AgNO_3 \longrightarrow AgI + NaNO_3$          |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | $2AgI + Fe \longrightarrow FeI_2 + 2Ag$                                                                                                             |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | $2\text{FeI}_2 + 3\text{Cl}_2 \longrightarrow 2\text{FeCl}_3 + 2\text{I}_2$                                                                         |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | How many grams of AgNO <sub>3</sub> are required in the first step for every 254 kg I <sub>2</sub> produced in the third step?                      |                                            |                     |                                     |                 |                                           |            |                                                    |  |
|      | (Molar mass of $I_2 = 254 \mathrm{g}$ , $AgNO_3 = 170 \mathrm{g}$ )                                                                                 |                                            |                     |                                     |                 |                                           |            |                                                    |  |

Code A | Page 6

**(A)** 

 $340 \times 10^{4}$ 

 $340{\times}10^3$ 

**(B)** 

**(D)** 

 $34 \times 10^2$ 

JEE Main - 1 | JEE 2024

 $34 \times 10^{3}$ 

**(C)** 

# **Vidyamandir Classes: Innovating For Your Success**

| 11.                                                                                                                                                                                                                                                            | 1. If 20.0 g of CaCO <sub>3</sub> is treated with 20.0g of HCl. How many grams of CO <sub>2</sub> can be produced according                 |                                          |                                                                   |                                      |                                   |                      | an be produced according |                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|--------------------------------------|-----------------------------------|----------------------|--------------------------|------------------------------|--|
| to the reaction:                                                                                                                                                                                                                                               |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | $CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(\ell) + CO_2(g)$                                                                    |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 8.80 g                                   | <b>(B)</b>                                                        | 7.70 g                               | <b>(C)</b>                        | 8.00 g               | <b>(D)</b>               | 7.20 g                       |  |
| 12.                                                                                                                                                                                                                                                            | The m                                                                                                                                       | olality of a sulp                        | huric ac                                                          | id solution is (                     | 0.2. Calcu                        | late the total       | l weight of t            | he solution having 1000g     |  |
|                                                                                                                                                                                                                                                                | of solv                                                                                                                                     |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 1000 g                                   | (B)                                                               | 1098.6 g                             | <b>(C)</b>                        | 980.4 g              | <b>(D)</b>               | 1019.6 g                     |  |
| 13.                                                                                                                                                                                                                                                            | Select the correct statement(s) out of following.                                                                                           |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
| I. Molality and mole-fraction are independent of small change in temperature.                                                                                                                                                                                  |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      | ture.                    |                              |  |
|                                                                                                                                                                                                                                                                | II. Molar volume of an ideal gas is 22.4 L under all conditions of T and P.                                                                 |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | <ul><li>(A) Statement-I is correct and statement-II is incorrect</li><li>(B) Statement-I is incorrect and statement-II is correct</li></ul> |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | (B)<br>(C)                                                                                                                                  | Statement-I an                           |                                                                   |                                      |                                   | ect                  |                          |                              |  |
|                                                                                                                                                                                                                                                                | (C)<br>(D)                                                                                                                                  | Statement-I an                           |                                                                   |                                      |                                   |                      |                          |                              |  |
| 14.                                                                                                                                                                                                                                                            | ` '                                                                                                                                         |                                          |                                                                   |                                      |                                   |                      | ng to give o             | earbon dioxide and 8.0 g     |  |
|                                                                                                                                                                                                                                                                | _                                                                                                                                           | sium oxide. Wha                          |                                                                   | -                                    | _                                 |                      |                          | =                            |  |
|                                                                                                                                                                                                                                                                | _                                                                                                                                           | ic mass : $Mg = 2$                       |                                                                   | e me percenag                        | 50 Position o                     | 1 111481140141       |                          | :                            |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 60                                       | (B)                                                               | 84                                   | (C)                               | 75                   | (D)                      | 86                           |  |
| 15.                                                                                                                                                                                                                                                            |                                                                                                                                             | are two isotope                          | s of an                                                           | element with                         | average a                         | tomic mass           | z. The heav              | vier one has atomic mass     |  |
|                                                                                                                                                                                                                                                                | 'z+1'                                                                                                                                       | and lighter one                          | has 'z-                                                           | 2', then abund                       | lance of li                       | ghter one is:        |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 66.6%                                    | <b>(B)</b>                                                        | 96.7%                                | <b>(C)</b>                        | 6.67%                | <b>(D)</b>               | 33.3%                        |  |
| 16.                                                                                                                                                                                                                                                            | 0.4 mc                                                                                                                                      | oles of AgNO <sub>3</sub> is             | s heated                                                          | strongly to lea                      | ve residue                        | e behind. Fir        | nd volume o              | f gases collected at STP.    |  |
| [Reaction involved : $AgNO_3 \xrightarrow{\Delta} Ag(s) + NO_2(g) + \frac{1}{2}O_2(g)$ ]                                                                                                                                                                       |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | [React                                                                                                                                      | ion involved : A                         | $g_{NO_3}$ –                                                      | $\longrightarrow$ Ag(s)+1            | $NO_2(g) + \frac{1}{2}$           | $\frac{-O_2(g)}{2}$  |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 134.4 L                                  | <b>(B)</b>                                                        | 1.344 L                              | <b>(C)</b>                        | 17.92 L              | <b>(D)</b>               | 13.44 L                      |  |
| 17.                                                                                                                                                                                                                                                            | 50 mL                                                                                                                                       | of a solution co                         | ntaining                                                          | g 1g each of N                       | a <sub>2</sub> CO <sub>3</sub> an | d NaHCO <sub>3</sub> | was titrated             | with 1 N HCl. What will      |  |
|                                                                                                                                                                                                                                                                | be the                                                                                                                                      | titre value when                         | only ph                                                           | enolphthalein                        | is used as                        | indicator?           |                          |                              |  |
|                                                                                                                                                                                                                                                                | [Mola                                                                                                                                       | r mass : Na <sub>2</sub> CO <sub>2</sub> | $_{3} = 106  \mathrm{g}$                                          | g mol <sup>-1</sup> , NaHC           | $CO_3 = 84g$                      | $mol^{-1}$           |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 35 mL                                    | (B)                                                               | 32.5 mL                              | (C)                               | 24.5 mL              | <b>(D)</b>               | 9.43 mL                      |  |
| 18.                                                                                                                                                                                                                                                            | ` '                                                                                                                                         |                                          | . ,                                                               |                                      |                                   |                      | ` ′                      |                              |  |
| 18. Chalk is mainly CaCO <sub>3</sub> with some impurity of CaSO <sub>4</sub> . 2 gm of the chalk is dissolved in $\frac{M}{5}$ H <sub>2</sub> SO <sub>4</sub> and 310 mL of $\frac{M}{10}$ Al(OH) <sub>3</sub> is required to neutralize the remaining sulphu |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | $\frac{m}{5}$ H <sub>2</sub>                                                                                                                | $SO_4$ and 310 m                         | nL of $\frac{1}{1}$                                               | $\frac{1}{0}$ Al(OH) <sub>3</sub> is | required                          | to neutraliz         | the remai                | ning sulphuric acid. The     |  |
| percentage of CaCO <sub>3</sub> in the chalk is:                                                                                                                                                                                                               |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 28.75 %                                  | <b>(B)</b>                                                        | 57.5 %                               | (C)                               | 86.5 %               | <b>(D)</b>               | None of these                |  |
| 19.                                                                                                                                                                                                                                                            |                                                                                                                                             |                                          | ` '                                                               |                                      | ` '                               |                      | * *                      | olution. At the end point    |  |
| 17.                                                                                                                                                                                                                                                            |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      | 2-2-4)                   | oration. The tire on a point |  |
| following burette readings (Volume of NaOH) were obtained.  (i) 5.5 mL (ii) 5.2 mL                                                                                                                                                                             |                                                                                                                                             |                                          |                                                                   |                                      | iaineu.<br>(ii                    | ii) 5 mL             |                          |                              |  |
|                                                                                                                                                                                                                                                                | (iv)                                                                                                                                        | 5 mL                                     |                                                                   | (v) 5 ml                             |                                   | (11)                 | ii) 3 iiiL               |                              |  |
|                                                                                                                                                                                                                                                                | ` '                                                                                                                                         |                                          | acid taken was 10.0 mL then the molarity of the NaOH solution is: |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 4 M                                      | (B)                                                               | 5 M                                  | (C)                               | 10 M                 | (D)                      | 4.5 M                        |  |
| 20.                                                                                                                                                                                                                                                            |                                                                                                                                             |                                          | . ,                                                               |                                      |                                   |                      | ` /                      | , a certain volume of the    |  |
| above solution required 20 ml of 1 M HCl solution to reach the phenolphthalein end point                                                                                                                                                                       |                                                                                                                                             |                                          |                                                                   |                                      |                                   |                      |                          |                              |  |
|                                                                                                                                                                                                                                                                |                                                                                                                                             | _                                        |                                                                   |                                      |                                   |                      |                          | uired to make it just red.   |  |
|                                                                                                                                                                                                                                                                | Molar                                                                                                                                       | ratio of NaOH to                         | o Na <sub>2</sub> CC                                              | O <sub>3</sub> present in th         | e original                        | sample is:           |                          |                              |  |
|                                                                                                                                                                                                                                                                | (A)                                                                                                                                         | 1:1                                      | <b>(B)</b>                                                        | 4:1                                  | <b>(C)</b>                        | 3:1                  | <b>(D)</b>               | 2:1                          |  |

#### **Vidyamandir Classes: Innovating For Your Success**

#### **SECTION-2**

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 99 (both inclusive).

- 21. The hydrated salt  $Na_2SO_4 \cdot nH_2O$  undergoes 50.3% loss in weight on heating and become anhydrous. The value of 'n' will be \_\_\_\_\_\_. (Atomic mass: Na = 23, S = 32, O = 16)
- 22. If a protein has 0.07% Fe(M = 56) by weight as the only metal, its molar mass would be at least  $M \times 10^4$  g. Here M is \_\_\_\_\_.
- What volume of 90% alcohol by weight  $(d = 0.8 \text{ g mL}^{-1})$  must be used to prepare 80 mL of 10% alcohol by weight  $(d = 0.9 \text{ g mL}^{-1})$ ?
- 24. The neutralization occurs when 10 mL of 0.1 M acid 'A' is allowed to react with 30 mL of 0.05 M base M(OH)<sub>2</sub>. The basicity of the acid 'A' is \_\_\_\_\_.
- 25. HCl gas is passed into water, yielding a solution of density 0.365 g mL<sup>-1</sup> and containing 30% HCl by weight. Calculate the molarity of the solution.

**SPACE FOR ROUGH WORK** 

## **PART - III: MATHEMATICS**

**100 MARKS** 

# **SECTION-1**

This section contains 20 Multiple Choice Questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE CHOICE is correct.** 

If  $\alpha^2 = 5\alpha - 3$  and  $\beta^2 = 5\beta - 3$ ,  $(\alpha \neq \beta)$  then the equation having  $\frac{\alpha}{\beta}$  and  $\frac{\beta}{\alpha}$  as its roots is: 1.

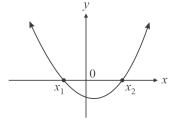
(A)  $3x^2 - 19x + 3 = 0$ 

**(B)**  $3x^2 + 19x - 3 = 0$ 

(C)  $3x^2 - 19x - 3 = 0$ 

**(D)**  $x^2 - 5x + 3 = 0$ 

The solution of the inequality  $\frac{x+7}{x-5} + \frac{3x+1}{2} \ge 0$  is: 2.


> (A)  $[1,3]\cup(5,\infty)$

**(B)**  $(1,3)\cup(5,\infty)$ 

(C)  $(-\infty, 1) \cup (5, \infty)$ 

**(D)** None of these

Figure shows graph of  $y = ax^2 + bx + c$ . Then which one of the following is not true?  $(|x_1| < |x_2|)$ 3.



 $(\mathbf{A}) \qquad a > 0$ 

**(B)** 

(C)  $b^2 - 4ac > 0$ 

**(D)** 

The solution set of the inequality  $|x+2|-|x-1| < x - \frac{3}{2}$  is: 4.

(A)  $\left(\frac{9}{2}, \infty\right)$  (B)  $\left(-\infty, \frac{3}{2}\right)$  (C)  $\left(-2, -\frac{3}{2}\right)$  (D)  $\left(-1, \frac{3}{2}\right)$ 

Set of values of x satisfying the inequality  $\frac{x^2 + 6x - 7}{|x + 4|} < 0$  is(are): 5.

(A)  $\left(-\infty, -7\right)$ 

(C)  $(-7, -4) \cup (-4, 1)$ 

The solution set of the inequality  $log_{0.8} log_6 \left( \frac{x^2 + x}{x + 4} \right) < 0$  is: **6.** 

(A)  $\left[-4,-2\right]\cup\left(8,\infty\right)$ 

**(B)**  $\left(-4, -3\right) \cup \left[8, \infty\right)$ 

(C)  $(-4, -3) \cup (8, \infty)$ 

If  $log_{245} 175 = a$ ,  $log_{1715} 875 = b$ , then  $\frac{1 - ab}{a - b} =$ (A) 5 (B) 6 (C)

**(D)** 

1

|     |                                                                                                                                                                 | '                                                                                                                               | /idyama    | ndir Classes:                  | Innovatir              | g For Your                                  | Success        |                                      |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|------------------------|---------------------------------------------|----------------|--------------------------------------|--|--|
| 8.  | Consider the following statements.                                                                                                                              |                                                                                                                                 |            |                                |                        |                                             |                |                                      |  |  |
|     | I.                                                                                                                                                              | Solution set                                                                                                                    | of the ine | quality -15 <                  | $\frac{3(x-2)}{5} \le$ | 0 is (-23, 2)                               | ]              |                                      |  |  |
|     | II.                                                                                                                                                             | Solution set of the inequality $7 \le \frac{3x+11}{2} \le 11$ is $\left[1, \frac{11}{3}\right]$                                 |            |                                |                        |                                             |                |                                      |  |  |
|     | III.                                                                                                                                                            | Solution set of the inequality $-5 \le \frac{2-3x}{4} \le 9$ is $[-1, 1] \cup [3, 5]$                                           |            |                                |                        |                                             |                |                                      |  |  |
|     | Choo                                                                                                                                                            | se the correct of                                                                                                               | otion:     |                                |                        |                                             |                |                                      |  |  |
|     | (A)                                                                                                                                                             | Only I and II                                                                                                                   | are true   |                                | <b>(B)</b>             | Only II an                                  | d III are true |                                      |  |  |
|     | <b>(C)</b>                                                                                                                                                      | Only I and II                                                                                                                   |            |                                | <b>(D)</b>             |                                             |                |                                      |  |  |
| 9.  | If $a$ , $b$ , $c$ are all distinct, then $a\frac{(x-b)(x-c)}{(a-b)(a-c)} + b\frac{(x-c)(x-a)}{(b-c)(b-a)} + c\frac{(x-a)(x-b)}{(c-a)(c-b)} - x$ , is equal to: |                                                                                                                                 |            |                                |                        |                                             |                |                                      |  |  |
|     | <b>(A)</b>                                                                                                                                                      | 0                                                                                                                               |            |                                | <b>(B)</b>             | $ax^2 + bx +$                               | - <i>c</i>     |                                      |  |  |
|     | (C)                                                                                                                                                             | ( , , , )(                                                                                                                      | 2 1)       |                                | <b>(D</b> )            | $\frac{x^2}{x} + \frac{x}{t} + \frac{x}{t}$ | 1              |                                      |  |  |
|     | (C)                                                                                                                                                             | (a+b+c)(x                                                                                                                       | +x+1       |                                | (D)                    | $\frac{-}{a}$                               | $\frac{-}{c}$  |                                      |  |  |
| 10. | If the                                                                                                                                                          | If the equation $x^2 + 2  a  x + 4 = 0$ has integral roots, then the minimum value of a is:                                     |            |                                |                        |                                             |                |                                      |  |  |
|     | (A)                                                                                                                                                             | 4                                                                                                                               | <b>(B)</b> | $-\frac{5}{2}$                 | (C)                    | 0                                           | <b>(D)</b>     | -4                                   |  |  |
| 11. | Suppo                                                                                                                                                           | ose $a, b, c \in R$                                                                                                             | and b      | $\neq c$ . If $\alpha$ ,       | $\beta$ are roo        | ots of $x^2$ +                              | ax + b = 0     | and $\gamma$ , $\delta$ are roots of |  |  |
|     | $x^2 + ax + c = 0$ , then value of $\frac{(\alpha - \gamma)(\alpha - \delta)}{(\beta - \gamma)(\beta - \delta)}$ is:                                            |                                                                                                                                 |            |                                |                        |                                             |                |                                      |  |  |
|     | <i>J</i> ( ) (                                                                                                                                                  | an re-o, men                                                                                                                    | varae or   | $(\beta-\gamma)(\beta-\alpha)$ | $\delta$ )             |                                             |                |                                      |  |  |
|     | <b>(A)</b>                                                                                                                                                      | 0                                                                                                                               | <b>(B)</b> | 2                              | <b>(C)</b>             | 1                                           | <b>(D)</b>     | -1                                   |  |  |
| 12. | If the roots of the equation $2x^2 - (a^3 + 1)x + (a^2 - 2a) = 0$ are of opposite signs, then the set of possible                                               |                                                                                                                                 |            |                                |                        |                                             |                |                                      |  |  |
|     |                                                                                                                                                                 | of a is:                                                                                                                        |            | ( /                            | ,                      |                                             |                |                                      |  |  |
|     | (A)                                                                                                                                                             | (0, 2)                                                                                                                          | <b>(B)</b> | [0, 2]                         | <b>(C)</b>             | (0, 2]                                      | <b>(D)</b>     | [0, 2)                               |  |  |
| 13. | If x be real and $b < c$ , then $\frac{x^2 - bc}{2x - b - c}$ lies in:                                                                                          |                                                                                                                                 |            |                                |                        |                                             |                |                                      |  |  |
|     | (A)                                                                                                                                                             | (b, c)                                                                                                                          | 2,,        | <i>v v</i>                     | <b>(B)</b>             | [b, c]                                      |                |                                      |  |  |
|     | (C)                                                                                                                                                             | $(-\infty, b] \cup [c,$                                                                                                         | , ∞)       |                                | <b>(D)</b>             | $(-\infty, b) \cup$                         | $(c, \infty)$  |                                      |  |  |
| 14. | If $\alpha$ ,                                                                                                                                                   | If $\alpha$ , $\beta$ are the roots of $ax^2 - 2bx + c = 0$ , then $\alpha^3 \beta^3 + \alpha^2 \beta^3 + \alpha^3 \beta^2$ is: |            |                                |                        |                                             |                |                                      |  |  |
|     |                                                                                                                                                                 |                                                                                                                                 |            |                                |                        |                                             |                |                                      |  |  |
|     | <b>(A)</b>                                                                                                                                                      | $\frac{e^{-(e^{x}+2e)}}{a^3}$                                                                                                   | <b>(B)</b> | $\frac{bc^2}{a^3}$             | <b>(C)</b>             | $\frac{c}{a^3}$                             | <b>(D)</b>     | None of these                        |  |  |
| 15. | If a a                                                                                                                                                          | $\mathbf{nd}\;b$ are the non                                                                                                    | -zero dis  | tinct roots of .               | $x^2 + ax + b$         | =0, then the                                | e least value  | of $x^2 + ax + b$ is:                |  |  |
|     | (4)                                                                                                                                                             | 2                                                                                                                               | <b>(D)</b> | 9                              | (C)                    | 9                                           | <b>(D)</b>     | 1                                    |  |  |
|     | <b>(A)</b>                                                                                                                                                      | $\frac{2}{3}$                                                                                                                   | <b>(B)</b> | 4                              | <b>(C)</b>             | <u></u>                                     | <b>(D)</b>     | 1                                    |  |  |

If both the roots of the equation  $x^2 - 2kx + k^2 - 4 = 0$  lie between -3 and 5, if and only if k is given by: 16.

-2 < k < 2**(A)** 

-5 < k < 3

-3 < k < 5**(C)** 

-1 < k < 3**(D)** 

**Vidyamandir Classes: Innovating For Your Success** Suppose the quadratic equations  $x^2 + px + q = 0$  and  $x^2 + rx + s = 0$  are such that p, q, r, s and real and **17.** pr = 2(q + s). Then: (A) Both the equations always have real roots **(B)** At least one equation always has real roots **(C)** Both the equation always have non-real roots Atleast one equation always has real and equal roots **(D)** If b > a, and c > 0 then the equation (x-a)(x-b)-c=0 has: 18. (A) Both roots in  $(-\infty, a)$ **(B)** Both roots in (a, b]

- (C) One root in  $(-\infty, a)$  and other root in  $(b, \infty)$
- **(D)** One root in  $(-\infty, a)$  and other root in [a, b]
- 19. If  $\alpha$  and  $\beta(\alpha < \beta)$  are the roots of the equation  $x^2 + bx + c = 0$ , where c < 0 < b, then:
  - (A)  $0 < \alpha < \beta$

**(B)**  $\alpha < 0 < \beta < |\alpha|$ 

(C)  $\alpha < \beta < 0$ 

- **(D)**  $\alpha < 0 < |\alpha| < \beta$
- **20.** If the roots of  $ax^2 + bx + c = 0$  are the reciprocals of those  $\ell x^2 + mx + n = 0$  then a : b : c = 0
  - (A)  $n:m:\ell$
- **(B)**  $\ell:m:n$
- (C)  $m:n:\ell$
- **(D)**  $n:\ell:n$

#### **SECTION-2**

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 99 (both inclusive).

- For the equation  $3x^2 + px + 3 = 0$ , p > 0, if one of the root is square of the other, then p is equal to  $\frac{1}{2}$ .
- Suppose a and b are real numbers with  $ab \ne 0$ . If the three quadratic equations  $x^2 + ax + 12 = 0$ ,  $x^2 + bx + 15 = 0$  and  $x^2 + (a + b)x + 36 = 0$  have a common positive root then |a| + |b| =\_\_\_\_\_.
- 23. If  $\alpha$  and  $\beta$  are the roots of the equation  $x^2 ax + b = 0$  where a = 69 and  $A_n = \alpha^n + \beta^n$ , then  $\frac{\left(A_{n+1} + bA_{n-1}\right)}{A_n}$  is \_\_\_\_\_.
- 24. The number of real values of parameter k for which  $(log_{16} x)^2 log_{16} x + log_{16} k = 0$  will have exactly one solution is
- 25. The value of a for which the equations  $x^2 3x + a = 0$  and  $x^2 + ax 3 = 0$  have only one common root is \_\_\_\_\_.

**SPACE FOR ROUGH WORK**